

POPULAR SCIENCE ARTICLE

Innovative Water Recirculation Based Aquaculture for Sustainable Urban Fish Production

Ankur Rajbongshi

Krishi Vigyan Kendra, Nalbari, AAU, Sariahtoli, Assam, 781337

ankur.rajbongshi@aau.ac.in

Abstract

Rapid urbanization and population growth have intensified the demand for safe and nutritious food produced close to consumption centers. Conventional aquaculture practices often require large volumes of water, extensive land and suitable environmental conditions, which are difficult to obtain in densely populated cities. Recirculatory aquaculture systems RAS have emerged as a technologically advanced and resource efficient approach that enables intensive fish culture within confined spaces while maintaining high water quality. RAS operate by continuously treating and reusing culture water through mechanical biological and chemical filtration processes. Emphasis is placed on system engineering water quality management species selection economic considerations environmental sustainability and integration with urban agriculture. The adoption of RAS has the potential to transform urban food systems by enabling year round production of high quality fish with minimal environmental footprint.

Key words: Aquaculture, Urbanization, Recirculation, Sustainability, Biosecurity, Intensification

Introduction

Urban populations are expanding rapidly across the globe. According to the United Nations 2019 more than fifty five percent of the global population currently lives in urban areas and this figure is projected to increase substantially by 2050. Urbanization places immense pressure on food supply chains particularly for perishable and nutrient dense commodities such as fish. Capture fisheries have stagnated worldwide while demand for aquatic products continues to rise. Aquaculture has therefore become the fastest growing food production sector globally (Naylor *et al.*, 2021).

Traditional pond based aquaculture systems require large tracts of land and significant water resources which are increasingly scarce in urban and peri urban areas. Moreover effluent discharge from conventional systems may contribute to environmental pollution. These constraints have encouraged the development of intensive closed loop production technologies such as recirculatory aquaculture systems.

Recirculatory aquaculture systems allow fish to be cultured at high densities under controlled environmental conditions while reusing more than ninety percent of the culture water (Ebeling and Timmons, 2010). This technology

enables aquaculture to be practiced in buildings warehouses and other non traditional spaces thereby making it highly suitable for urban settings.

Concept and Principles of RAS

Recirculatory aquaculture systems are designed to minimize water exchange by continuously treating and reusing water within the production unit. In a typical RAS water from fish tanks is passed through mechanical filters to remove suspended solids followed by biological filters where nitrifying bacteria convert ammonia to nitrite and nitrate (Martins *et al.*, 2010). Additional components such as degassing units oxygenation systems and disinfection devices further improve water quality.

Badiola *et al.*, (2012) emphasized that the central principle of RAS is maintaining equilibrium between waste generation and treatment capacity. When this balance is achieved stable water quality conditions can be maintained even at very high stocking densities.

System Components

Culture tanks in RAS are commonly circular or octagonal with central bottom drains to facilitate efficient removal of solid wastes (Ebeling and Timmons, 2010). Mechanical

filtration units include drum filters, sedimentation basins and swirl separators which trap large particles.

Biological filtration is the core of RAS. Biofilters provide large surface areas for nitrifying bacteria that oxidize ammonia into nitrate (Summerfelt, 2006). Common biofilter types include moving bed bioreactors, trickling filters and fluidized sand filters.

Disinfection units such as ultraviolet or ozone systems are frequently incorporated to reduce pathogen loads and improve biosecurity (Martins *et al.*, 2010). Pumps and plumbing networks ensure continuous circulation of water throughout the system.

Water Quality Management

Maintaining optimal water quality is essential for successful RAS operation. Key parameters include temperature, dissolved oxygen, pH, ammonia, nitrite, nitrate, alkalinity and carbon dioxide. Deviations from optimal ranges can result in stress, reduced growth and disease outbreaks.

Dissolved oxygen concentrations should be maintained above five milligrams per liter for most cultured species. Ammonia and nitrite must be kept near zero through effective biofiltration. Nitrate accumulation can be controlled through partial water exchange or integration with plant production systems (Tyson *et al.*, 2004).

Continuous monitoring using sensors and automated control systems improves reliability and reduces labor requirements (Ebeling and Timmons, 2010).

Species Selection

Species suitable for RAS must tolerate high stocking densities and fluctuating environmental conditions. Tilapia, catfish, carp and trout are among the most widely cultured species in RAS worldwide.

Tilapia is especially favoured due to its fast growth, high feed efficiency and tolerance to suboptimal water quality. African catfish and channel catfish are also well adapted to intensive recirculatory culture (Badiola *et al.*, 2012). High value species such as barramundi and seabass are increasingly produced in urban RAS to improve profitability (Naylor *et al.*, 2021).

Feeding and Nutrition

Feed management plays a major role in determining both production efficiency and water quality. Feed accounts for more than fifty percent of total operating costs in intensive aquaculture systems (Bureau and Hua, 2010).

Poor quality or excessive feeding increases waste output and places additional load on biofilters.

High quality, nutritionally balanced feeds with high digestibility reduce nitrogen and phosphorus excretion (Bureau and Hua, 2010). Automated feeders are commonly used in RAS to deliver small, frequent meals, thereby improving feed utilization and minimizing waste (Ebeling and Timmons, 2010).

Biosecurity and Health Management

RAS provide greater biosecurity than open systems because incoming water can be treated and access to the facility can be controlled (Martins *et al.*, 2010). However, high stocking densities increase susceptibility to disease if pathogens are introduced.

Strict sanitation protocols, quarantine of new fish and routine health monitoring are essential management practices. Ultraviolet and ozone disinfection systems help reduce microbial loads but must be combined with good husbandry (Badiola *et al.*, 2012).

Energy Use and Environmental Sustainability

One of the primary limitations of RAS is relatively high energy consumption. Pumps, blowers, heaters and chillers operate continuously to maintain optimal conditions. Nevertheless, technological advancements have improved energy efficiency and reduced operational costs (Martins *et al.*, 2010).

From an environmental perspective, RAS generate significantly lower effluent volumes than conventional pond systems. Solid wastes can be captured and processed into fertilizers or biogas. The reduced water footprint of RAS makes it highly suitable for water scarce urban environments.

Integration with Aquaponics

Aquaponics combines RAS with hydroponic plant production. Nutrients excreted by fish are utilized by plants, thereby reducing nitrate accumulation and improving overall system efficiency (Tyson *et al.*, 2004).

Integrated aquaponic systems produce both fish and vegetables within the same facility, which enhances economic resilience and resource efficiency. Such systems are particularly attractive for urban agriculture initiatives.

Economic Considerations

Initial capital investment for RAS is higher than for traditional pond systems due to the cost of equipment and infrastructure (Ebeling and Timmons, 2010). However, high productivity

per unit area and year-round production can compensate for these costs.

Urban consumers increasingly prefer locally produced sustainable seafood which can command premium prices (Naylor *et al.*, 2021). Careful business planning and market analysis are essential for economic success.

Future Prospects

Continued research is needed to improve biofilter performance develop low energy technologies and optimize system design (Badiola *et al.*, 2012). Advances in sensor technology automation and data analytics are expected to further enhance RAS efficiency. RAS is expected to play a central role in meeting future seafood demand while reducing pressure on natural ecosystems.

Conclusion

Recirculatory aquaculture systems provide a viable and sustainable approach to urban fish farming. By combining intensive production with efficient water reuse and waste treatment RAS overcome many of the limitations associated with conventional aquaculture. Although challenges remain particularly related to capital investment and energy use ongoing technological innovation continues to improve feasibility. With appropriate policy support research and investment RAS can become a cornerstone of sustainable urban food systems and contribute significantly to global food security.

References

Badiola, M., Mendiola, D. & Bostock, J. (2012). Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challenges. *Aquacultural Engineering*, 51, 26-35.

Bureau, D. P. & Hua, K. (2010). Towards effective nutritional management of waste outputs in aquaculture, with particular reference to salmonid aquaculture operations. *Aquaculture Research*, 41(5), 777-792.

Martins, C.I.M., Eding, E.H., Verdegem, M.C., Heinsbroek, L.T., Schneider, O., Blancheton, J.P., d'Orbcastel, E.R. & Verreth, J. A. J. (2010). New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. *Aquacultural engineering*, 43(3), 83-93.

Naylor, R.L., Hardy, R.W., Buschmann, A.H., Bush, S.R., Cao, L., Klinger, D.H., Little, D.C., Lubchenco, J., Shumway, S.E. & Troell, M. (2021). A 20-year retrospective review of global aquaculture. *Nature*, 591(7851), 551-563.

Summerfelt, S. T. (2006). Design and management of conventional fluidized-sand biofilters. *Aquacultural Engineering*, 34(3), 275-302.

Ebeling, J. M., & Timmons, M. B. (2010). *Recirculating aquaculture*. Ithaca, NY, USA: Cayuga Aqua Ventures.

Tyson, R. V., Simonne, E. H., White, J. M., & Lamb, E. M. (2004). Reconciling water quality parameters impacting nitrification in aquaponics: the pH levels. In *Proceedings of the Florida State Horticultural Society* (Vol. 117, pp. 79-83).